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Abstract

We propose a unified model for human motion prior with multiple actions. Our model is generated from sample pose sequences
of the multiple actions, each of which is recorded from real human motion. The sample sequences are connected to each other
by synthesizing a variety of possible transitions among the different actions. For kinematically-realistic transitions, our model
integrates nonlinear probabilistic latent modeling of the samples and interpolation-based synthesis of the transition paths. While
naive interpolation makes unexpected poses, our model rejects them 1) by searching for smooth and short transition paths by
employing the good properties of the observation and latent spaces and 2) by avoiding using samples that unexpectedly synthesize
the non-smooth interpolation. The effectiveness of the model is demonstrated with real data and its application to human pose

tracking.
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1. Introduction

Motion prior is widely used in human pose tracking, sim-
ulation, and synthesis for accuracy and robustness. Motion
prior is obtained from samples of real human motion. Motion
datasets including the sample sequences have been distributed
for motion modeling and evaluation in Computer Vision[1] and
Graphics[2, 3] communities. Different kinds of actions (e.g.
walking, jogging, dance) were recorded independently in these
datasets. The motion model of each action can be leveraged for
analyzing that action.

For efficiently and adaptively using motion prior of multiple
actions, a unified motion model of these actions is useful. Dif-
ferent actions are smoothly transited from one to another (e.g.
from walking to jogging) in a natural scenario, while they are
recorded independently in motion datasets. Since it is not prac-
tical to record a huge variety of possible transitions among all
of the different actions, modeling the smooth transition is im-
portant. Smooth transition paths between the different actions
enable successful pose modeling over the different actions.

This paper proposes a human motion model for smooth tran-
sitions among elemental actions in dataset and its application
to pose tracking. After introducing related work (Sec. 2) and
existing models for motion modeling and interpolation (Secs. 3
and 4), Sec. 5 reveals the problems of naive integration of the
existing models. Sec. 6 describes the proposed model. Exper-
imental results of pose tracking with the proposed model are
presented in Sec. 7, and we conclude the paper in Sec. 8.
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2. Related Work

The pose of a human body is modeled by a set of
joint positions/angles, which can be measured by a mo-
tion capture system. The motion has been modeled by
various ways: interpolation[6], Gaussian mixture models[7],
HMM][8], Variable Length Markov Model[9], exemplar (re-
trieval) model[4], autoregressive model[11], the mixtures of au-
toregressive models[5], and manifold[10]. The motion models
are useful for solving the short-lasting ambiguities between a
body shape and its pose due to occlusions.

High dimensionality of joint angles (30-60 dimensions)
and their erratic motions make it difficult to represent var-
ious motions efficiently and correctly. Such complex mo-
tions are usually modeled in a lower dimensional space (e.g.
by using PCA, LLE[12], or Isomap[13]). Recently, non-
linear probabilistic embedding (e.g. latent modeling with
Gaussian Process, which is called GPLVM[14]) and its ex-
tensions are widely used for motion modeling: for example,
GPLVM with scaling dimensions for coping with their dif-
ferent variances[15], dynamics representation[16] bidirectional
smooth mapping between latent and observation spaces[17], hi-
erarchical representation[18], and a shared latent structure that
connects multiple observation spaces[19]. Above all, Gaussian
Process Dynamical Models (GPDM)[16], dynamic extension
of GPLVM, is useful for modeling temporal data such as hu-
man motion.

These latent models with Gaussian Process (GP) allow us
also to model multiple kinds of actions; a mixture of indepen-
dent models[20, 22] and a model with multiple actions trained
together[20, 21, 23]. While these models represent transition
among actions by a kind of interpolation, naive interpolation
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Figure 1: Pose space Y, its latent space X, and mapping functions between and
within them, which are acquired by GPDM[16]. Circles and arrows in X depict
latent variables and temporal mapping, fp(x), respectively. The background
color in X denotes the variance at each point; lower (red) to higher (blue).

might synthesize unrealistic poses in terms of human body
kinematics. Indeed, nonlinear GP makes unexpected interpo-
lation results by the weighted sum of many kinds of samples,
which might be included in different actions, in the latent space;
described in detail in Sec. 5. This fact requires us to check
whether or not interpolation along each potential transition path
synthesizes realistic human poses.

Transitions among sample sequences of any actions are ex-
plicitly modeled by motion graphs[24, 25, 26]. A transition
path is synthesized by connecting (i.e. interpolating) differ-
ent sequences via similar poses. Similarity in motion graphs
is evaluated in a high-dimensional pose or shape spaces, so that
the sample/interpolated sequences are used as long/short as pos-
sible; see [25, 26], for example. The goal is to synthesize new
paths as visually natural as possible, while even visually natural
poses might be kinematically unrealistic.

This paper proposes how to integrate the advantages of GP
latent models and motion graphs to learn a variety of smooth
transitions among actions. A new contribution is kinematically-
realistic path synthesis by evaluating motion smoothness and
distortion of pose interpolation both in the observation and la-
tent spaces. Our model synthesizes possible transitions (i.e.
not only the shortest transition) based on probabilistically-
reasonable pose trajectories in a low-dimensional space.

3. Gaussian Process Dynamical Models

3.1. Overview

Gaussian Process Dynamical Models (GPDM)[16] (Fig. 1)
provide us dimensionality reduction and temporally smooth
transition in the low-dimensional latent space. Inherence of the
GP allows us to optimize the latent space increasing its gener-
alization and conformity with human body structure and kine-
matics. GPDM with a D-dimensional observation space Y (i.e.
Pose observation space in Fig. 1), which is inherently nonlin-
ear, and its d-dimensional latent space X (i.e. Pose latent space
in Fig. 1) is defined by two mappings; 1) from a point at ¢ to
a point at ¢ + 1 in the latent space, fp(x) where x € X, and 2)
from the latent space to the observation space, fo(x). The for-
mer mapping gives us the capability of prediction and is useful
for human motion tracking.

Given a training pose sequence with N frames Y =
[¥i, -+, yn], the mapping functions are acquired by maximiz-
ing the joint likelihood of ¥ and X,;; with respect to X =
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Figure 2: Sample motion frames of two actions. For example, “1st frame in (a)
and 1st frame in (b)” and “81-st frame in (a) and 61-st frame (b)” are almost
regarded as pairs of potential transition frames between two actions.

[x1,---,xy] and X, respectively, where X,1; = [x2, -, xpn]
and X; = [x1,---,xy-1]. In this optimization, similarity be-
tween variables in X is evaluated by a kernel function and com-
pared with that in Y. The kernel function in our experiments
was the nonlinear Gaussian radial basis function.

3.2. Problems of Inter-action Transitions by GPDM

Transition between two actions, dancel and dance2, was
predicted by GPDM. GPDM learned their sample sequences
of joint angles 2, which were obtained by a motion capture
system (Fig. 2), in a single 3D latent space. In dancel and
dance2 sequences, a subject moved the arms between “right-
upper and left-upper” and “right-lower and left-upper”, respec-
tively, where transition might occur when he raised the arms.
Figure 3 (a) shows the obtained latent model of two actions. In
this model, transition between two actions is apparently diffi-
cult because their trajectories are distant. This result shows that
a standard latent model is superior to classification of different
actions but inferior to tracking between them.

To encourage the transition, topologically-constrained
modeling[20] is useful. This modeling allows us to arrange the
latent variables of poses where the transition may occur close
to each other as shown in Fig. 3 (b). Such poses were given
manually in this experiment.

To evaluate the possibility of the transition between the sam-
ple sequences, particles were distributed around the 1st frame
of the dancel sequence and then moved by temporal mapping,
fp(x), of GPDM. While no transition occurred in the standard
GPDM, about 10 % of particles reached the dance2 sequence in
the topologically-constrained GPDM. The transitions were not
sufficient yet because the chance level of the transition should
be 50 % if two actions almost overlapped.

Most particles did not transit between the actions because the
flows of the temporal mapping around the potential transition
frames (Fig. 4) moved in the same directions as those of the
sample frames. To encourage the transition, sample sequences
between different actions should be prepared for modeling the
inter-action transition explicitly.

2In all experiments, joint angles were expressed by the exponential map[28].
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Figure 3: Latent models obtained by GPDM. The blue and green arrows show
dancel and dance2 sequences, respectively.

Figure 4: Temporal mapping of GPDM with no samples between different ac-
tions. Yellow circles and arrows depict the frames where the transition may oc-
cur and the temporal mapping directions from the points between those frames,
respectively.
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Figure 5: Constructing motion graphs with good connectivity[26]. Arrows de-
pict edges, which connect similar poses.

4. Motion Graphs

4.1. Overview

Motion graphs[24] provide new transition paths between
sample sequences with good connectivity and motion quality,
which conflict with each other; good connectivity means that
transitions are synthesized as many as possible, while good
motion quality is achieved by transitions only between similar
poses that can make smooth paths.

Motion graphs consist of pose data (i.e. nodes) and possi-
ble transitions between them (i.e. directed edges). The state-
of-the-art motion graphs proposed in [26] makes a set of in-
terpolations (depicted by “Interpolated poses” in Fig. 5) be-
tween sample sequences. This interpolation is achieved only
around sample poses each of which has the local minimum of
the similarity function, |ly; — y,ll, where y; and y; denote the
poses of two sequences. y; consists of the 3D positions of all
joints at i-th frame. From all of the samples and interpolations,
motion graphs are constructed by connecting similar poses, as
illustrated in Fig. 5 (a). The graphs are then reduced by prun-
ing edges that do not improve connectivity by the Dijkstra’s
shortest path search as illustrated in Fig. 5 (b); if two poses
are connected via multiple paths, only the edges that compose
the shortest path are left. The remaining transitions among the
samples via the interpolations are more smooth and increased
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Figure 6: A pair of matched poses in sample sequences, (i) from dancel and (v)
from dance2, and three smooth interpolations between them, (ii), (iii) and (iv).

(i.e. better motion quality and connectivity) than those obtained
with direct interpolation between the sample poses[24]. This is
because pose similarity is densely evaluated between smaller
differences (i.e. between more similarly-interpolated poses).

4.2. Problems of Inter-action Transitions with Motion Graphs
in the Observation Space

Unlike GPDM, motion graphs are not possessed of capability
of motion prediction; they just have possible transition paths.
For motion prediction, one natural way is to learn new transi-
tion paths synthesized by motion graphs with original sample
sequences by employing GPDM. Since GPDM relies on given
sample sequences, the synthesized motions must be similar to
real motions that are consistent with the human-body kinemat-
ics. Note that motion graphs synthesize visually-reasonable
poses but do not necessarily take into account the human-body
kinematics because motion graphs have been developed for
Computer Graphics applications. The kinematic consistency
of the poses synthesized by motion graphs is evaluated in this
section.

The consistency was evaluated with dancel and dance?2 se-
quences. The poses of the transition points and their interpo-
lations constructed by [26] are shown in Fig. 6. The interpo-
lated poses are visually reasonable. To quantitatively evaluate
their kinematic consistency, they were compared with a range
of motions that were captured while a subject moved all joints
as whole as possible. All frames of this sequence were modeled
by GP. The likelihood of each interpolation, x, was expressed
by exp(—o&), where o’%c denotes the variance of the distribution
of the sample poses, which was obtained by GP.

The likelihoods of many interpolations were sufficiently
high. In particular, simple hinge joints (e.g. elbows and knees)
could be interpolated correctly; the mean of their likelihoods
was around 90 % of that of the sample frames. Complex joints
(e.g. shoulders and inguinal joints) were, on the other hand,
incorrectly interpolated in several frames. In these paths, their
likelihoods were less than 60 % of the mean of those in the
sample frames.

These kinematically-inconsistent joint angles were synthe-
sized due to linear interpolation in the observation space; even
if joint angles a and b are observed in a joint, its angle possibly
cannot have several interpolated values between a and b. This
problem is not critical in CG applications but should be avoided
in modeling human motion prior.
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Figure 7: Samples of two actions (blue and green lines) and interpolated vari-
ables (other colors) in the latent space obtained by topologically-constrained
GPDM.
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Figure 8: Temporal history of sample and interpolated poses. Interpolation (iii)

violated a smooth motion; while the arms were moving right to left, they moved
to right at (iii).

5. Strengths and Limitations of Interpolation for New
Transitions in the Latent Space

Sections 3 and 4 show “action transition with no transition
samples in the latent space” and “pose interpolation among dif-
ferent actions in the observation space”, respectively. In this
section, interpolation in the latent space by motion graphs is
verified. In constructing motion graphs, 1) similarity between
two latent variables is measured by the Euclidean distance and
2) interpolation between sample poses is computed linearly, in
the latent space. The interpolated latent variables and the re-
spective 3D poses obtained by the mapping function fp(x) are
shown in Figs. 7 and 8, respectively.

In terms of kinematic consistency, the likelihoods of the
poses obtained by motion graphs in the latent space ((ii), (iii),
and (iv) in Fig. 8) were higher than those in the observation
space; the likelihoods, which were computed by the same way
as those in Sec. 4.2, were above 70 % of the mean of those
in sample frames. This result says that interpolation in the la-
tent space gives us reasonable poses, as demonstrated in robotic
control[27].

However, the human poses synthesized from the interpolated
variables made an unexpected motion. The arms of interpo-
lated pose (iii) in Fig. 8 deviated from a smooth motion. This
problem occurred due to GP regression fp(x), where a distance-
weighted sum of ALL samples is computed, from the latent
space to the observation space. In Fig. 7, the latent variables
not only of the transition points (“Samplel” and “Sample2” in
Fig. 7) but also of other sample frames (“Other samples” in Fig.
7) were close to the interpolated latent variable of the pose (iii).
The other sample frames then strongly and incorrectly affected
the synthesized pose (iii). Since the human poses of the other

sample frames are not similar to those of the transition points,
the unexpected poses were synthesized.

The incorrect effect on pose synthesis is caused because in-
terpolated poses are not used in GPDM optimization. That is, if
the interpolated poses are used in optimization, GPDM models
the latent space so that they are located away from the poses
that are not similar to them.

Although the likelihood of a pose can be evaluated by
the variance in the latent space, it is difficult to discriminate
whether an interpolated pose is unexpected for the smooth path
only by evaluating the variance. This is because the interpo-
lated pose might have a low variance due to the proximity be-
tween the pose and many samples even if the pose violates the
smoothness of the synthesized path.

The incorrect effect on pose synthesis from interpolated la-
tent variables would increase as sample actions increase and/or
become more complex.

From the discussions in Sec. 3, 4, and 5, we obtain the fol-
lowing insights:

e Interpolation in the observation space produces smooth but
possible kinematically-unreasonable motion.

e Interpolation between different actions, where no sam-
ples are given, in the latent space produces kinematically-
reasonable but possibly non-smooth motion due to GP re-
gression using ALL samples.

6. Gaussian Process Motion Graph Models

6.1. New Transitions in the GP Latent Models

The goal of this work is to integrate the advantages of GPDM
and motion graphs while avoiding unreasonable poses. We call
the resulting latent variable models Gaussian Process Motion
Graph Models, GPMGM. GPMGM evaluates pose similarity,
smoothness, and distribution both in the observation and latent
spaces in order to avoid unreasonable poses. The evaluation is
integrated into the shortest path search algorithm for establish-
ing new transition paths.

The steps of GPMGM optimization are described below,

each of which is illustrated one by one in Fig. 9:
Step 1: GPDM is applied to a set of samples of all actions. The
end points of potential transition paths are extracted from latent
variables of GPDM by finding local minima of the following
function between all possible pairs of the latent variables in ac-
tions i and J:

A/pollxe; = x|l + (1/w)lvi = vjl, ey

where x and v denote the coordinates and velocity of each la-
tent variable, respectively; the velocity is expressed by temporal
mapping of GPDM, fp(x). u, and u, are the mean values of ||x||
and [jv]| in the samples, respectively. Extracting these points in
the latent space is robust to noise and nonlinearity in a high-
dimensional observation space.

Efficient dimensionality reduction using GPDM allows us to
extract the end points of transition paths robustly against noisy
and sparse samples in the high-dimensional observation space.
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Figure 9: Overview of GPMGM construction. Red notes (from 1. to 7.) explain steps 1 to 7 described in the body text.

Step 2: The latent space is reconstructed by topologically-
constrained GPDM[20] so that the extracted end points are
close together (as described in Sec. 3.1). This step allows us
to acquire smooth trajectories between different actions (i.e.
actions 7 and j), which are crucial for smooth motion predic-
tion. In addition, distance equilibrium between temporally-
neighboring points given by this step is required in the follow-
ing process; described in Step 5.

Step 3: Sample poses around the extracted end points are inter-
polated in the observation space for synthesizing intermediate
poses, which are depicted by dashed arrows in Fig. 9 (as de-
scribed in Sec. 4.1). Note that the sample poses corresponding
to the extracted end points, which are used for interpolation
in the observation space, are known. This is because the point
correspondence of all training data between the observation and
latent spaces is known.

Step 4: The interpolated poses are mapped to the latent space’.
Notice again that while the poses are interpolated smoothly in
the observation space, their respective latent variables might
produce kinematically-unreasonable poses.

Step 5: This step 5 finds kinematically-reasonable paths from
a set of all the interpolated poses, while keeping their smooth-
ness. To this end, the variance and smoothness of the interpo-
lated poses in the latent space are evaluated.

With the latent variables of the interpolated and sample
poses, motion graphs are constructed so that 1) a path that con-
nects two latent variables is regarded as a node and 2) a latent
variable that connects two paths is regarded as an edge. As il-
lustrated in Step5 of Fig. 9, the nodes can be established by any
pairs of latent variables.

Each edge (e.g. x; in Step5 of Fig. 9) has its length that is
the weighted sum of three components: i) the lengths of its two

3Since Jo 1(y) is not obtained by GPDM, it is estimated by general GP
regression[29] from sample poses to their respective latent variables after the
optimization of GPDM ends. Another alternative is using the back-constrained
GPLVM[17], which provides f,; '(y) as well as fo(y). While the back-
constraints have a good property for obtaining bidirectional mapping func-
tions, f;, !(y) and fo(y), integration of the back-constraints and the smoothness-
constraints with GPDM increases a computational cost, and the optimization re-
sults tend to be a local minimum. In our experiments, therefore, GPDM without
the back-constraints was used for emphasizing the temporal mapping function.
Achieving a good balance between the back-constraints and the smoothness-
constraints is included in the future work.

nodes (i.e. two paths linked to x;), d; and d», ii) the angle be-
tween them, 6, and iii) the likelihood of x;, which is computed
from the variance, 62, obtained by GP. With these components,
the edge length is expressed as follows:

(Wa/pa)(dy + da) + (Wa/pa)8 + (wi/ pr) exp(=67)), @)

where (4, p,, and y; are the mean values of their respective
terms. Weight variables wy, w,, and w; are determined empiri-
cally. 6'? is the variance of the distribution only of samples, S,

that are temporally-connected to the extracted end points*:

67 = k(xjx) -k K'kj, 3)
where k(-,-), K, and k; denote a kernel function (i.e. RBF ker-
nel, in our experiments), the kernel matrix developed from S,
and a column vector whose i-th element is k(x;, x;); x; is the
i-th point in S. Refer to [14] for details. Using only S for com-
puting 6'5 can suppress the negative impacts on synthesizing
paths that are smooth between the extracted end points.

The edge length defined by Eq 2 encourages making
kinematically-smooth concatenations of the interpolated poses
as well as making shorter paths between different actions. The
Dijkstra’s algorithm is applied to every possible pair of sample
poses around the extracted end points between actions i and ;.
Only the shortest path is then left in each pair, as depicted by
thick red arrows in Step5 of Fig. 9.

New transition synthesis is designed as described above be-
cause of the following reasons:

e While shorter paths make smooth and natural transitions,
longer paths might make unreasonable poses. This is be-
cause 1) as the longer path gets far from the extracted end
points, which should be mainly employed for pose inter-
polation, the pose on the long path might be affected by
other poses in GP regression and 2) in mapping the in-
terpolated poses from the observation space, unreasonable
poses are mapped to distant regions with large variance.
By avoiding the longer paths, therefore, reasonable poses
can be selected for path synthesis.

48 consisted of 30 samples before and after each end point in our experi-
ments
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Figure 10: Sample data of two actions (blue and green) and interpolated vari-
ables (other colors) in the latent space obtained by GPMGM.
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Figure 11: Temporal history of sample and interpolated poses obtained by GP-
MGM.

e While only pose similarity between nodes is evaluated in
motion graphs[26] because they deal with graphical mod-
els with no metric on edges, the three metrics (i.e. length,
angle, and variance in Eq. (2)) in our models provide good
connectivity and motion quality.

Step 6: Depending on the number of the synthesized paths
given by the Dijkstra’s algorithm, motion prior is determined
(i.e. how often the action transition happens). Given the num-
ber (denoted by N?), the top N? shortest paths remain. The
number should be determined in accordance with a task® (e.g.
subjects, environments, actions, and scenarios).

Step 7: With the remaining interpolated latent variables and
directed edges between them, two mapping functions, fp(x)
and fp(x), are recomputed by GP regression. Note that only
the mapping functions are recomputed, while the latent vari-
ables of training samples remain in where they are located by
topologically-constrained GPDM[20] in Step 2.

6.2. Improved Inter-action Transitions by GPMGM

The reasonability of new transitions synthesized by GPMGM
is validated. Here again, the pose sequences of two dance ac-
tions were used.

Synthesized transitions are shown in Fig. 10. Compared with
Fig. 7, the number of synthesized transition paths increased,
while the one that produced unreasonable poses, which was de-
tected in Fig. 7, was not synthesized. It can be seen that their re-
spective 3D poses were smoothly synthesized as shown in Fig.
11. From a quantitative point of view, the mean of the likeli-
hoods of the interpolated poses was around 95 % of that of the
sample poses.

SIn all experiments in this paper, only one path was left.
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Figure 12: Feature particle filter and its regression to the pose space via the
latent space.

7. Human Pose Tracking with GPMGM

7.1. Algorithm

GPMGM was applied to motion prior in human pose track-
ing. Pose tracking was achieved by image-to-pose regression
with particle filtering, whose overview is shown in Fig. 12.

In the learning process, pose data (i.e. joint angles) at each
frame is captured with its respective image features (3D volume
features[30] and 2D shape contexts[31] in our experiments). for
learning an image-to-pose regression function. Motion prior is
obtained from the temporal pose data.

In the tracking process, the latent variable of a current pose
is estimated by particle filtering with motion prior in the latent
space. The current pose is then inferred by pose regression from
the estimated latent variable.

The following are more specific descriptions of the tracking
algorithm:

e Pose regression was achieved via X as with [32]. An input
feature y is mapped to X, which is shared by the feature
and pose observation spaces as proposed in [19], by map-
ping fF‘C',(y). The distance between the mapped feature, %,
and every particle is computed to obtain their likelihood-
weighted mean that is mapped to the pose observation
space by mapping fpo(X). The likelihood of each parti-
cle is computed by exp(—v/), where [ denotes the length
between X and the particle whose variance in X is v.

e Motion prior in X was modeled by GPMGM. Particles are
temporally shifted by motion prior (fp(x) in Fig. 12) and
then compared with %.

The difference from the previous methods[32, 30] was that X
was optimized by GPMGM.

7.2. Experiments

Pose tracking was performed by the method mentioned in
Sec. 7.1. Three kinds of datasets below were used for evalua-
tion:

Setl A mixture of dancel and dance2 sequences.
Set2 A mixture of walking and jogging.
Set3 A mixture of six kinds of gait actions: 1) walking, 2)

walking slowly, 3) walking fast, 4) striding, 5) jogging,
and 6) stopping and walking.
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Figure 14: Results of pose tracking in dance sequences. Red circles indicate joints that were misaligned from the respective ground truth.

In all sets, five subjects were tested while only one subject was
captured for sample sequences for training. While each sample
sequence used for training includes only one kind of action, a
test sequence consisted of a number of action transitions. Image
sequences were captured at 30fps and 1024x768 pixels. Mocap
data was captured also in the test sequences for evaluation. For
evaluating the proposed models, these sets are more suitable
than existing video and mocap datasets (e.g. HumanEva[1]) in
terms of including more action transitions.
For comparison, three kinds of motion prior were tested:

(a) GPDM provided motion prior with no inter-action transi-
tions.

(b) Topologically-constrained GPDM provided motion prior
with inter-action transitions synthesized in the observation
space by motion graphs.

(c) GPMGM provided motion prior with smooth transition
paths. w; = 1, w, = 3, and w; 1 were determined
empirically.

In all models, the sample sequences of different actions was
used together for training (i.e. for obtaining a unified model of
multiple actions).

All experiments were performed with the same parameters:
256 particles distributed in a 3D latent space.

Pose tracking was achieved by two kinds of features,
3D volume descriptors[30] using multiviews and 2D shape
contexts[31] using a single view. Tables 1 and 2 show the RMS
errors of all joint positions in the experiments using 3D volume
descriptors and 2D shape contexts, respectively. In the tables,
the RMS errors throughout all frames and around action transi-
tions are shown. GPMGM could obtain better results than other
models, in particular during the action transitions.

Figure 13 shows a test sequence of Setl. In this example,
motion prior should be switched from dancel to dance2 dur-
ing 20-th and 80-th frames. The latent models by (a), (b), and

Table 1: RMS errors of estimated joint positions using 3D shape contexts: (all
frames)/(around transition frames).

(mm) [ (a) GPDM | (b) T-GPDM | (c) GPMGM

Setl [ 23146 | 1829 |  15/26
Set2 | 3044 | 2634 | 1923
Se3 | 3752 | 29/45 | 2534

Table 2: RMS errors of estimated joint positions using 2D shape contexts: (all
frames)/(around transition frames).

(mm) [ (a) GPDM | (b) T-GPDM | (c) GPMGM

Setl 31/38 25/29 23/28
Set2 34/49 28/46 20/29
Set3 48/67 39/56 31/42

(c) have been shown in Fig. 3 (a), (b), and Fig. 10. Figure 14
shows pose tracking results estimated using the volume descrip-
tors. Red circles indicate joints that were misaligned from the
respective ground truth. Several results in (a) and (b) were mis-
aligned. In particular, the large error of 70-th frame in (a) was
caused because particles moved to the dance2 samples slowly
due to lack of transition paths.

Figure 15 shows a test sequence of Set2. Sample sequences
of synchronized videos and pose data for learning consisted of
two separate action sequences (i.e. walking and jogging se-
quences) of only one subject. In this example, a subject started
jogging during 45-th and 65-th frames. Figure 16 shows pose
tracking results obtained using the volume descriptors. Large
errors in (a) show that motion prior with no transition paths had
difficulty in following inter-action transitions. Relatively large
errors in (b) show that tracking accuracy decreased during inter-
action transitions with motion prior in the observations space.
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Figure 15: Temporal images of walking and jogging sequences: two different views.

f 24 04

(a) Poses estimated by GPDM.: (i.e. with no synthesized

transitions): Sec. 3

10-th

30-th

50-th

View?2

(b) Poses estlmated by topologically-constrained GPDM with

synthesized paths: Sec. 4

(f\ Bl g |
gt

(d) ground truth

e

Figure 16: Results of pose tracking in walking and jogging sequences. Red circles indicate misaligned joints.

(c) Poses estimated by GPMGM

Finally, Figure 17 shows a test sequence of Set3. Figure 18
shows the results of pose tracking with 2D shape contexts and
GPMGM. Although the errors were higher than those in the
above two experiments due to complexity of the combination
of the six actions, GPMGM could get better results than other
models. It can be seen that pose tracking was achieved well
even during repetitive action transitions.

In all the experiments, GPMGM could obtain better results
throughout the sequences as well as during transitions among
actions. Improvement during all frames other than transition
frames might be happened because GPMGM was generalized
so that similar motions in different action sequences were mod-
eled closely.

8. Concluding Remarks

We proposed the motion models of multiple actions, GP-
MGM. GPMGM is learned from independently captured ac-
tion sequences so that potential transition paths between them
are synthesized. Since the transition paths are synthesized in
the motion-specific latent space, they reflect the human-body
kinematics of the target actions. GPMGM is applicable to any
motions because transition paths can be established among any
motion trajectories.

In this work, GPMGM is constructed by relying on reason-
able latent space modeling. Kinematic reasonability is cru-
cial for meaningful motion synthesis. For improving the rea-
sonability, future work includes employing physical constraints
for improving robustness and accuracy of detecting transition
points[33] and pruning unrealistic motions[34]. To model a
number of different actions, they should be efficiently classified
and modeled separately[20] for improving accuracy and scala-
bility of modeling, while all actions were unified in this paper.

The GPDM codes were provided by courtesy of Neil
Lawrence and Jack Wang.
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